
Large Scale Software
System Development

The role of creating systems
engineering in the Interfront
iCBS development program

(11 April 2013)

Overview of Case Study presentation

1. Introductions

2. Program size and context complexity

3. System of systems challenges encountered

4. Program achievements

5. Systems engineering approach

6. Engineering the creating system
a. Organisational system

b. Technical enabling system

7. Some notes on the application of agile
development methodologies

Introduction

• Interfront

• SARS Customs Modernisation Program

• My involvement

Product size and complexity
– Functional scope: Core declaration processing sub-system – 27 Use Cases and

300 requirements
– Business Rules:

• 1,321 Configurable rules
• 158 Complex rules
• 146,340 Default conditionalities

– Sub-systems: 6
– Managed xsd interfaces: 29
– Queues: 71
– Code base: 2 EAR’s, 32 WAR’s, 325 JAR’s
– Performance/Load requirements:

• end-to-end transaction: Average 50 sec (1-10,000 line declarations)
• current production load: 20,000/day. Must scale to 60,000/day.
• Parallel run: 25,000/4 hrs = 6250/hr = 104/minute

– Availability requirements: 24/7 (Upgrades midnight)
– Reliability/Integrity requirements: 100% transactions accounted for. Accuracy of

duties/taxes (scents-level)

System performance

Context complexity
• Context complexity

– Team size: 63
– External interfacing systems: 10
– User/Operator interfaces: 4 (different operational functional/support

departments)
– Contracting parties: 6
– Distributed program team
– Dynamic, fast pace project and industry in government organisation

(bureaucratic establishment)

• High degree of uncertainty (context complexity)
– Full scope of system unclear and continuously changing
– No specification or complete description of existing system to be

replaced
– Transition strategy being developed as the system matures
– Daily detail requirements changes (small to large impact) in a response

to daily legacy system parallel testing

The SARS context...

Typical system of systems (SoS) Challenges

1. System elements operate independently
2. System elements have different life cycles
3. The initial requirements are likely to be ambiguous:

Requirements for an SoS mature as the system elements
mature

4. Complexity is a major issue: Added system elements
result in non-linear interaction growth

5. Management can overshadow engineering: coordination
of requirements, budget constraints, schedules,
interfaces, and technology complicates development

6. Fuzzy boundaries cause confusion: No one controls the
definition of the external interfaces unless someone
defines and controls the system boundaries

7. SoS is never finished

Software Development still seriously
challenged: Standish CHAOS report

• 50,000+ Software Projects

• Around the world

• Since 1994

• 2009 results – even worse:

– 32% succeed

– 44% challenged

– 24% failed

35%

19%

46%

2006 Chaos Report Summary

Succeeded

Failed

Challenged

Source: Standish Group

Standish CHAOS report summary

1994 1996 1998 2000 2002 2004 2006

Succeeded 16% 27% 26% 28% 34% 29% 35%

Failed 31% 40% 28% 23% 15% 18% 19%

Challenged 53% 33% 46% 49% 51% 53% 46%

0%

10%

20%

30%

40%

50%

60%

1994 to 2006 Standish Chaos Report Summary

Program Achievements
• Daily full system releases: Full build, full regression testing,

integration, transition into production environment, data
loading, deploy, stabilise, full parallel testing run

• Running whole country’s declarations through INTF system
and comparing to legacy daily – automated (execution,
results and comparison analysis). Currently less than 5%
overall differences in INTF and legacy results.

• Daily production delta data take-on (of all sub-systems)
• Coverage of all system activity, catching all exceptions and

faults, with ability to manage and resolve issues with
needed security clearance levels (System Management
Console)

• Track any message end-to-end from any of the systems in
the greater SARS system. “Every transaction is precious”

Learning fast...

Systems Engineering: System of systems in context

Source: INCOSE Systems Engineering Handbook, 2010

Key SE-related concepts
• Change management

• Configuration Management

• Non-functionals (“ilities” / RAMS)

• Error/Failure Handling (FMEA/FMECA)

• Created vs creating system (Enabling Systems
Engineering)

• Management of internal and external dependencies

• Information Management

• Quality Management

• Decision Management

• Risk Management

 Reference: SE Body of Knowledge (http://www.sebokwiki.org)

http://www.sebokwiki.org/

Creating/Enabling Systems Engineering

• Estimated 30-50% of program effort went into
development and maintenance of the ‘creating
system’ (i.e. 20-30 out of every 60 man hours)

• Includes:

– Enterprise systems engineering (incl. Process)

– Tooling and supporting system engineering

Structuring teams and organisations to develop SoS’s

• Conway’s law: “...organizations which design systems ... are
constrained to produce designs which are copies of the
communication structures of these organizations”

• Balance in system & organisational hierarchies: 7 + 2 rule
(manage organisational and communication complexity)

Source: SE Body of Knowledge (http://www.sebokwiki.org)

http://www.sebokwiki.org/075/images/2/26/Fairley_Fig_1_(2)_Layer_1.png
http://www.sebokwiki.org/075/index.php/File:Fairley_Fig_2_Layer_1.png
http://www.sebokwiki.org/

SARS & Interfront SDLC’s overlay

SARS Bus Req

SARS SubSys Req SARS Int Test

SARS QA Test

INFT Sys Req

INFT Subsys Req INFT subSys Test

SARS subSys
Dev & Test

INTF subSys
Dev & Test

INFT Sys Test

Relevant ‘Creating system’ concepts
• Enterprise Systems Engineering (ESE): The application of systems

engineering principles, concepts, and methods to the planning, design,
improvement, and operation of an enterprise (SE Body of Knowledge
http://www.sebokwiki.org)

• Self-organising teams: (i.e., not organised by mandate) in that the sentient
beings in the enterprise will find for themselves some way in which they
can interact to produce greater results than can be done by the
individuals alone. Self-organizing enterprises are often
more flexible and agile than if they were organized from above (Dyer and
Ericksen 2009; Stacey 2006)

• DevOps: DevOps is frequently described as a more collaborative and
productive relationship between development teams and operations
teams. This improved relationship and collaboration
increases efficiency and reduces the production risk associated with
frequent changes. (Wikipedia)

• Release Management: The process of managing software releases from
development stage to software release. (Wikipedia)

• Continuous Integration: the practice, in software engineering, of merging
all developer workspaces with a shared mainline several times a day

http://www.sebokwiki.org/

Capabilities in the Enterprise

 Individual Competence Leads to Organizational, System & Operational Capability

Key ‘creating system’ elements (Process & Organisation)

• Team structuring
– Systems engineering capability in Interfront and SARS

– Independent data team controlling interface specifications and data baselines

– Instilling self-contained functions for ‘new’ software development disciplines:

• Release Management

• DevOps

– Self-organising teams

– Interdependence between teams (reflected in KPIs)

• Requirements and specification practices
– Blue Print and specification base lining (Enterprise Architect)

– Formal Change management (ECPs, issue logs etc)

– Documentation management (drafts, releases, distribution control)

• Interfront release approach
– Incremental system releases

– Release planning and documentation (continuous)

– Disciplined issue tracking and reporting

– Internal Release Management incl. full release content audits

– Baseline control register (system of systems level)

• Continuous integration

• Systems Engineering & Design Authority (SE&DA) (Cross-discipline,
cross-team design function facilitated by SE)

• Test and Qualification approach
– Verification and coverage measure against specification (RVTM’s)

– Levels of qualification testing with quality gates

– Regression testing documentation and configuration control for repeatable
execution, and change control of test case procedures

– Qualification environments management

• Establishment of rhythms
– Daily rhythms enabled through self organising teams: Program level, team

level, client interactions

 Daily dev cycle: reporting, analysis, planning, implementation, build, test
and release

– Weekly rhythms: Program steerco, Project reporting, SEDA sessions, ECPs
scheduling and building

Key ‘creating system’ elements (Process & Organisation)
cont....

Business Agility – Enterprise Architecture
One type of enterprise architecture that supports agility is a non-
hierarchical organization without a single point of control.
Individuals function autonomously, constantly interacting with each
other to define the vision and aims, maintain a common
understanding of requirements and monitor the work that needs to be
done.
Roles and responsibilities are not predetermined but
rather emerge from individuals’ self-organizing activities and are
constantly in flux.
Key decisions are made collaboratively, on the spot, and on the fly.
Because of this, knowledge, power, and intelligence are spread
through the enterprise, making it uniquely capable of quickly
recovering and adapting to the loss of any key enterprise component.

Source: (http://en.wikipedia.org/wiki/Business_agility)

http://en.wikipedia.org/wiki/Business_agility

Processes...

ECP Process
• ECP: Engineering Change Proposal
• Changes in requirements are managed by ECP’s
• It provides a structured and controlled approach to product

changes and project planning (incl. costing)
• ECP’s includes:

– Detail descriptions/specification of the required change
– An impact assessment of the change i.t.o. :

• Work required to implement
• Cost to implement
• Timescale impact on other items already in development

• ECP’s are formally approved by the client before
development is triggered, which serves as the delivery
contract

• Approved ECP’s are added to the product’s functional
baseline

Continuous Integration
Continuous Integration (CI) is a software development practice where

members of a team integrate their work frequently, usually each
person integrates at least daily – leading to multiple integrations per

day. Each integration is verified by an automated build (including test)
to detect integration errors as quickly as possible. Many teams find

that this approach leads to significantly reduced integration problems
and allows a team to develop cohesive software more rapidly.

(Martin Fowler)

• Early identification of faulty software
• Automated
• 100% pass rate of all tests required
• Immediate roll-back on failure (strict baseline and stability control)
• Down-stream qualification efforts maximised for system level

functional testing

System Engineering & Design Authority
(SE&DA)

• Multi-disciplinary

• Typical topics:

– Archiving strategy and implications

– System Upgrade and data migration strategy

– Logging approach and levels

– Error handling across the system

– Transaction auditing across the system

– Queue monitoring and reporting for support

– Operationalisation and external system Integration

Client QA
issues

reproduction

Client QA
support

reproduction

Dev
Integration

Testing

Sub-system
QA Testing

System
Integration

Testing

Client QA
Testing

Production

Client QA
Fixes Dev

Testing

Prod. Bug
Fixes Dev
Testing

UAT Bug
Fixes QA
testing

Prod. Bug
Fixes QA
Testing

Client QA
support &

reproduction

C
lie

n
t

Q
A

 Is
su

es

P
ro

d
u

ct
io

n
 is

su
es

Development Test
environments

QA Test
environments

Support
environments

External
Integration

Testing

General Model for Interfront Levels of testing & Environments

Performance, availability &
endurance Testing

Integration
environments

Client Prod
support &

reproduction

Sub-system
QA Testing

Sub-system
QA Testing

Dev
Component

Testing

Dev
Component

Testing

Dev
Component

Testing

Client
environments

Key ‘creating system’ elements (Technical and Tooling)

• Code generation: Spec change results in new interface model which gets directly
translated into code (reduced time from 6 wks average to 10mins)

• Integrated System Life Cycle Management infrastructure (ALM):
– Bugzilla (end-to-end item management, target milestone deliveries, item statuses)
– SVN
– Continuous Integration Infrastructure (Jenkins, Maven, Master-POMs, SVN, Green Screens)
– Release content auditing: (I2T2) and health check of builds and data
– Internal release notes

• Integrated Qualification System:
– Requirements definition (Enterprise Architect)
– Change impact analysis
– Test Design
– Test Procedures (TestLink)
– Test execution automation tool
– Test scripts
– Test Results
– Requirements Verification and Traceability Matrix (RVTM)
– Comprehensive Test Reporting (Dashboard)

• System non-functional qualification infrastructure:
– System probes and monitoring framework (Tivoly, Hyperic)

– Performance and load test scripting and execution framework (J-Meter, Squirrel, LoadUI)

• System Processing Visualisation (custom tool)

• System Error reporting and transaction logging (Issue diagnosis and resolution
efficiency) (SMC)

• Data Management infrastructure:
– Data Management Tool (DMT)

– Extraction, Translation, Validation, Enrichment, Loading (ETL+) scripts and processing (to
achieve alignment with WCO data model)

• Infrastructure to support transitioning of product into Production:
– Compare tool (Automated Production parallel run comparison processing and reporting)

– Adaptable Comparison Analysis reporting framework (Excel pivot table system)

– Parallel Assistent Tool (PA Tool): Interrogation of parallel systems of systems for end-to-
end transaction information

– Production Replay Tool: Simulating full production environment on individual system-
system interaction level, i.e. external system behaviour per production transaction, to
reproduce exactly a production scenario

Key ‘creating system’ elements (Technical and Tooling) cont...

The realities of working on the iCBS system

Integrated Qualification system

TestLink

Req
Matrix

Automation
Tool**

Automation
Tool Plug-

in**

SVN

Test
Scripts,
Data &
Results

RVTM
& Test
Report

TestLink
Adapter

Build of
target
system

Test
Results

Export Test
Plan (Manual)

Incorporate Test
Plan in system build
and execute

Execute
tests

Results
Listener

Send test
results

Write test
results into TL

Export Test
Results (Manual)

Results &
coverage

Requirements
References

Import Test
Results into TL

Automated in CI
environment .
Manual trigger
mechanism in
qualification
environment

Test
scripts and
test data

Test
results Alternative

manual Export/
Import results
transfer to TL

Automated
results

transfer to TL

Twelve Principles of Agile SW Development

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software: Daily full system deploy

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage: Daily prioritisation of
new development items

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale. Daily full system deploy

4. Business people and developers must work together daily throughout the project.
Daily through systems engineering teams and program management

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done. Self-organising teams

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation. Daily communication rhythms,
open plan, Skype groups

7. Working software is the primary measure of progress. Continuous integration –
full regression testing with results

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely. Multiple
releases/week with stable baselines over months (Major system changes
included)

9. Continuous attention to technical excellence and good design enhances agility.
Collaborative, continuous design function – SE&DA

10. Simplicity--the art of maximizing the amount of work not done--is essential. As
simple as needed, and not simpler. Making things simple in a large
development is not easy.

11. The best architectures, requirements, and designs emerge from self-organizing
teams. Yes

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly. Retrospectives, Roles dedicated to
improving efficiencies and ways of work (DevOps, Org systems engineer).
Continuous pressure to up performance.

[Source: Agile Aliance: http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/]

Twelve Principles of Agile SW Development cont...

http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/

Key ingredient #1: Pressure creates diamonds...

Key ingredient #2: If nothing makes sense, make fun...

Thank You!

Questions / Comments?

