

Why SE works...

(pre-school explanation)

alphadot

Software Engineering institute

- Stan Rifkin, USA SEI survey
- Cost to write 200 000 lines of SW

Table 6 Relationship between Maturity Level, Effort, and Total Cost					
Maturity Level	Effort (man-months)	Total Cost (US\$)			
Initial	595	5,5 million			
Repeatable	143	1,3 million			
Defined	80	730,000			
Managed	43	392,000			
Optimised	16	146,000			

High-impact Innovation

Challenge: Image Quality

- Required to concentrate images onto single points
 - Primary Mirror comprises 91 Segments (Area 77m²)
 - Figure quality ~30nm RMS
 - Radius-of-Curvature variation <0.5mm on 26.5m
- Each segment aligned to within 0.06" (0.3mm over 1 km)
 - Mounted on steel truss
 - Wind
 - CCAS Tower and sensor
 - Edge Sensors measure control to 50nm
 - Actuators provide continuous control for each segment
- Dome Seeing
 - No heat sources (passive or active)
 - Louvres and air-conditioning
 - Air flow design and modelling

	enge: I	elesco	ope effi	iciency					
	Step 1	Step 2	Step 3	Step 4	Step 5 Open-loop tracking of object and implementation of tracking offsets (within 60s).		Step 6 Closed-loop tracking of guide object		
Tracker		SI	lew to destina (120s)	ation					
Structure		Lift up (20s)	Rotate (130s)	Lower (30s)	Stay in the same place				
Dome		Rotate (180s)			Stay in the same place				
Operator actions	Select Objects from list (30s)				Acquire object (30s)	Activate guidance (30s)	Fine- tune position (90s)	Observe object (1s to 90 min)	

Q alphadot igh-Impact Innovation Challenge: Systems Engineering

- Unfamiliar territory for customer
- Team has never built a telescope before
- Pushing the limits of Physics
- Multiple contracts across the Globe
- Large software component
- Fixed Budget and Schedule before engineering is done
- High system reliability required (operates 365 nights/year)
- High operational efficiency required
- Requires good development process

A alphadot -

Challenges: Tracker

- Must follow star as it "moves" across the sky
 - For up to 3 hours without smudging of image
 - Keep light falling on the same CCD pixel
 - 750kg Payload mass
 - 15m up in the air (wind and thermal effects)
- Precision X, Y, Z,
 - Tracking to within 6 micron
 - 3.25 m total travel
- Φ,Θ and ρ positioning
 - Follow angle to within 1" (0.0003 degrees)
 - +/- 8.5 degrees total travel
- Motion is time synchronised to within 1 millisecond absolute

Qu alphadot -

Telescope Control System

- Distributed control
- PC's (heavy maths)
- Labview
- 100 Mb/s Ethernet
- Central Node is TCS
 - SO and SA MMI
 - Astrometry
 - Observation scheduling
 - Pointing model
 - Subsystem co-ordination
 - Event/fault logging
 - Data storage

System-level testing

- SW followed incremental development process
 - TCS builds integrated one subsystem at a time
 - Developmental tests
 - Dry-runs of acceptance tests
 - "As-built" image quality error budget
- Followed by formal verification
- Record results in VCRM
- "Concede" or "fix" failed items

alphadot -

VCRM

- System and subsystem specs
- Full spec in a spreadsheet format
- Records verification status (Pass, Fail, Concede, Info)

Spec Para.	Heading	Requirement	Test Level	Test Method	Ref.	Test Type	Status
5.3.1.5.3	Tracking rates	The tracker shall follow the motions of objects that deviate from sidereal track rate by as much as $4^{\prime\prime}$ per second , meeting the requirement in 5.3.1.5.2.	System	Test		Pointing and tracking tests	
		The tracker optical payload shall rotate to keep a constant image orientation during an entire observation (~230º).	System	Test		Pointing and tracking tests	
5.3.1.5.4	Tracking range	The tracker shall be able to follow any object along a 12° arc in Right Ascension anywhere in the required declination range, as per 5.3.1.4.8	System	Test		Pointing and tracking tests	

- Comprise 5 members
 - Project Scientist (Chair)
 - Operations Manager
 - 3 Board members
- Must approve verification of System-level verification
 - Approve verification method and level
 - Approve test procedures
 - Review test results
 - Approve compliance evidence
- · Involved in sub-system VRCM reviews where desired

31

Was SE worth it?

- Clear measurable targets per system payment criteria
- Well orchestrated and understood process
- Problem resolution had baselines to refer to
- Technical visibility to the user/customer
- What seemed impossible, was achieved
- Not perfect
 - Residual 5% of issues carried over to Operation team
 - Two significant issues not resolved by handover
 - Operational staffing was underestimated

